



| 1           | Late Aptian paleoclimate reconstruction of Brazilian                                                                                                                                              |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2           | equatorial margin: inferences from palynology                                                                                                                                                     |
| 3           | Michelle Cardoso da Silva Giannerini <sup>1</sup> , Marcelo de Araujo Carvalho <sup>1</sup> ,                                                                                                     |
| 4           | Cecília Cunha Lana <sup>1</sup> , Gustavo Santiago <sup>1</sup> , Natália de Paula Sá <sup>1</sup> , Gabriel da Cunha                                                                             |
| 5           | Correia <sup>1</sup>                                                                                                                                                                              |
| 6<br>7<br>8 | <sup>1</sup> Laboratorio de Paleoecologia Vegetal (LAPAV), Departamento de Geologia e Paleontologia, Museu<br>Nacional Universidade Federal do Rio de Janeiro; 20940-040, Rio de Janeiro, Brazil. |
| 9           | Corresponding author: michelle.giannerini@gmail.com                                                                                                                                               |
| 10          | Abstract.                                                                                                                                                                                         |
| 11          | This study conducted high-resolution paleoclimatic analyses based on the identification                                                                                                           |
| 12          | of palynological groups from the late Aptian age (Biozone Sergipea veriverrucata) in                                                                                                              |
| 13          | the Bragança and Codó formations within the Bragança-Viseu, São Luís, and Parnaíba                                                                                                                |
| 14          | basins. The analysis comprised 40 palynological samples, with 200 palynomorphs per                                                                                                                |
| 15          | slide counted when possible. Bioclimatic analysis was mainly supported by the                                                                                                                     |
| 16          | identification of botanical affinities, and ecological and climatic parameters such as                                                                                                            |
| 17          | wet/arid trend (Fs/X), Shannon-Wiener diversity, and indicator species analysis                                                                                                                   |
| 18          | (IndVal) were used. Statistical analyses such as principal component and cluster                                                                                                                  |
| 19          | analyses were employed to support the paleoclimatic interpretations. The study                                                                                                                    |
| 20          | recognized 69 genera distributed among the main groups of living plants, including                                                                                                                |
| 21          | bryophytes, ferns, lycophytes, gymnosperms, and angiosperms. It was possible to                                                                                                                   |
| 22          | attribute botanical affinity in 94.2% of the taxa, and nine genera occurred in all sections                                                                                                       |
| 23          | studied: Afropollis, Araucariacites, Callialasporites, Cicatricosisporites, Classopollis,                                                                                                         |
| 24          | Cyathidites, Deltoidospora, Equisetosporites, and Verrucosisporites, with Classopollis                                                                                                            |





| 25 | being the most abundant. The stratigraphic distribution of the bioclimatic groups         |
|----|-------------------------------------------------------------------------------------------|
| 26 | (hydrophytes, hygrophytes, lowland tropical flora, upland flora, and xerophytes)          |
| 27 | allowed for the identification of climatic phases: pre-evaporitic, evaporites, and post-  |
| 28 | evaporites. In the pre-evaporitic phase, the most significant abundances were between     |
| 29 | the hygrophytes and upland flora, indicating a certain level of humidity. Xerophytes      |
| 30 | were the most abundant in all phases, with a conspicuous increase in the evaporitic       |
| 31 | phase, reflecting an increase in aridity. In the post-evaporitic phase, there was a       |
| 32 | significant increase in the upland flora with the return of wetter conditions. This study |
| 33 | confirmed an increasing humidity trend in the analyzed sections, probably owing to the    |
| 34 | influence of the Intertropical Convergence Zone that already operated during the late     |
| 35 | Aptian.                                                                                   |

1.

1 ·

36

#### 37 1. Introduction

38 The palynoflora preserved in the upper Aptian rocks of South America and Africa 39 is typical of hot conditions and is commonly associated with arid climates (Chumakov 40 et al., 1995, Hay and Floegel, 2012). However, because biodiversity tends to be higher 41 in wetter climates, the high diversity observed during the Aptian raises the possibility 42 that this arid phase fluctuated during that period. The palynoflora related to hot and humid climates exhibits a growing trend toward these conditions, even during the 43 44 Aptian. This trend may be linked to the shifting and strengthening of a humid belt 45 associated with the Intertropical Convergence Zone (ITCZ) (Hay and Floegel, 2012; 46 Scotese, 2016; Carvalho et al., 2022; Santos et al., 2022), as well as to the establishment 47 of the South Atlantic, which affected the marine current system.





| 48 | Palynology is a valuable tool for inferring paleoclimatic conditions based on              |
|----|--------------------------------------------------------------------------------------------|
| 49 | palynomorph studies. Late Aptian rocks from Brazilian sedimentary basins, including        |
| 50 | the Bragança and Codó formations, contain a significant representation of conifers from    |
| 51 | the family Cheirolepidiaceae and their pollen grains, such as Classopollis (Regali et al., |
| 52 | 1974; Carvalho et al., 2017, 2019, 2022). Classopollis is typically associated with arid   |
| 53 | conditions, often found in lagoons and coastal areas, and frequently associated with       |
| 54 | evaporites (Batten, 1975; Vakhrameev, 1970, 1981; Doyle et al., 1982; Hashimoto,           |
| 55 | 1995; Heimhofer et al., 2008, Carvalho et al., 2019). However, studies of the Sergipe      |
| 56 | Basin (northwestern Brazil), suggest strong fluctuations in the abundance of               |
| 57 | Classopollis and other xerophytic flora, with a decreasing trend toward the late Aptian    |
| 58 | accompanied by an increase in fern spores that require water for reproduction (Carvalho    |
| 59 | et al., 2017, 2019). The geographic extent of these trends remains controversial, and      |
| 60 | further investigation is required to identify possible climatic oscillations in other      |
| 61 | sedimentary basins in Brazil. Analysis of the Codó and Bragança formations, located in     |
| 62 | the Cretaceous section of the São Luís, Bragança-Viseu, and Parnaíba basins near the       |
| 63 | paleoequator, where the Intertropical Convergence Zone (ITCZ) occurs, has great            |
| 64 | potential to provide insights into this topic.                                             |
| 65 | The objective of this study was to infer the paleoclimate of the late Aptian period        |
| 66 | in the Bragança-Viseu, São Luís, and Parnaíba basins, all located in equatorial areas      |
| 67 | (Fig. 1), by examining the relationships between groups of palynomorphs. Furthermore,      |
| 68 | this study aimed to investigate how variations in the composition of paleofloras and       |
|    |                                                                                            |

69 indicator species are linked to climatic changes such as shifts in humidity and

70 temperature, as well as other paleoenvironmental forcings.

71





## 73 2. Geological settings

| 74 | According to Milani et al. (2007), the three sedimentary basins considered in this       |
|----|------------------------------------------------------------------------------------------|
| 75 | study are grouped into large assemblies based mainly on the tectonic context in which    |
| 76 | they developed: Mesozoic aborted rift basins (Bragança-Viseu and São Luís basins) and    |
| 77 | Paleozoic Syneclises (Parnaíba Basin).                                                   |
| 78 | The Bragança-Viseu, São Luís, and Parnaíba basins show a similar stratigraphic           |
| 79 | evolution. The Bragança-Viseu and São Luís basins are located on the equatorial margin   |
| 80 | and the Parnaíba Basin in north-central Brazil (Fig. 1). The basins constitute a rift    |
| 81 | system (graben and semi-graben) located between the terrains of the folding belt.        |
| 82 | Together, these cover an area of approximately 645,000 km <sup>2</sup> . The sedimentary |
| 83 | succession of the basins consists of Paleozoic, Mesozoic, and Cenozoic rocks. The        |
| 84 | Cretaceous strata are represented by the Bragança (Bragança-Viseu and São Luís           |
| 85 | basins), Grajaú, Codó, and Itapecuru Formations. In the studied sections, the Bragança   |
| 86 | (EGST-01 and VN-01 wells) and Codó (CI-01, PR-01, PE-01, RL-01 wells) formations         |
| 87 | were recognized.                                                                         |
| 88 | The Bragança Formation consists of gray medium- to coarse-grained sandstones             |

and conglomerates supported by conglomerates and greenish siltstones. This formationis interpreted as an alluvial fan deposit.

91 The Codó Formation is composed of dark shales, anhydrite, and calcilutites, with
92 sandstone intercalations. These deposits were assigned to a lagoonal environment.

93 Marine incursions are indicated by fossil contents and the occurrence of evaporitic

94 deposits.

95

96





## 97 3. Late Aptian climatic evolution

| 98  | The pre-evaporitic, evaporitic, and post-evaporitic phases are recognized for the         |
|-----|-------------------------------------------------------------------------------------------|
| 99  | late Aptian. These phases occur within the K40-K50 supersequences, and show an            |
| 100 | average maximum thickness of approximately 650 m in the studied basins. The pre-          |
| 101 | evaporitic phase is represented by carbonate and siliciclastic deposits formed in fluvial |
| 102 | and lacustrine deltaic environments within a large proto-oceanic gulf (Milani et al.,     |
| 103 | 2007). The peak of the evaporitic deposition is recorded in the K50 supersequence, with   |
| 104 | widespread occurrences in the Brazilian equatorial margin. The origin of these deposits   |
| 105 | is heat intensification associated with the widening of the Atlantic Ocean. These         |
| 106 | conditions caused strong evaporation, leading to a wide distribution of evaporites        |
| 107 | (mainly halite and anhydrite gypsum) in the South Atlantic basins. The post-evaporitic    |
| 108 | phase is characterized by fully marine conditions, evidenced by the rich assemblages of   |
| 109 | marine fossils. During this phase, carbonates were deposited, followed by muddy and       |
| 110 | sandy sediments, in shallow marine to slope environments.                                 |
| 111 | The Bragança and Codó formations are inserted within the K40-K50 Supersequence.           |
| 112 | However, in the Bragança Formation, only the pre-evaporitic phase is recognized. On       |
| 113 | the other hand, the Codó Formation has recorded the three climatic phases (pre-           |
| 114 | evaporitic, evaporitic, and post-evaporitic).                                             |
| 115 |                                                                                           |
| 116 | 4. Material and methods                                                                   |
| 117 |                                                                                           |
| 118 | 4.1. Studied sections                                                                     |

- 119 This study was based on core samples from three basins: Bragança-Viseu and São
- 120 Luís located in the equatorial margin, and the Parnaíba Basin in north-central Brazil.





- 121 The material for this study was derived from the cores of wells EGST-1 and VN-1 from
- 122 the Bragança-Viseu Basin; PR-1, PE-1, and RL-1 from the São Luís Basin; and CI-1
- 123 from the Parnaíba Basin (Table 1), all drilled by Petrobras (the Brazilian oil company)
- 124 (Fig. 1). Detailed information on the studied sections is presented in Table 1.

125 The stratigraphic succession studied comprises parts of the Bragança-Viseu, São Luís, 126 and Parnaíba Basins. The Bragança-Viseu Basin includes wells EGST-1 (676-1872.1 m), 127 consisting of sandstones, siltstones, and conglomerates, and VN-1 (1287.6-1317.69 m), 128 consisting only of sandstones (Fig. 2) (Table 1). 129 Three sections are from the São Luís Basin: PR-1 (1507.6-1513.1 m), composed of 130 sandstones and siltstones, and PE-1 (1562-1776.8 m), which has a lithology similar to 131 that of the previous one, with the addition of calcarenites. RL-1 (1157.3-1240.3 m) is 132 composed of sandstones, siltstones, calcarenites, and anhydrites. The fourth section, CI-133 1 (768-907.1 m), is from the Parnaíba Basin. CI-1 has a lithology similar to that of RL-1, 134 but the former has a more pronounced package of anhydrites than the latter does (Fig. 2) 135 (Table 1). 136 The late Aptian age of the samples is based on the Sergipea variverrucata

- 136 The late Aptian age of the samples is based on the *Sergipea variverrucata*
- 137 Biozone recognized in two studied drill cores (PR-1 and CI-1), which is correlated with
- 138 part of the upper Aptian Globigerinelloides algerianus Zone (Carvalho et al., 2016). In
- 139 the other four sections (EGST-1, VN-1, PE-1, and RL-1), Sergipea variverrucata was
- 140 not recognized. However, the identified floristic associations (e.g., Afropollis jardinus,
- 141 Araucariacites australlis, Bennettittaepollenites regallie, Equisetosporites maculosus,
- 142 Klukisporites foveolatus, Sergipea simplex) are attributed to the late Aptian of Brazil
- 143 (Regali and Santos, 1999; Carvalho et al., 2017, 2019).
- 144

145





#### 146 **4.2. Sample preparation**

- 147 The samples were prepared at the Research and Development Center of Petrobras
- 148 (CENPES) in Rio de Janeiro. The method used was the standard Petrobras method of
- 149 palynological preparation compiled by Uesugui (1979) on the basis of methods
- developed by Erdtman (1943, 1969) and Faegri et al. (1966). Thus, in this study, most
- 151 mineral constituents were dissolved by hydrochloric and hydrofluoric acids before
- 152 heavy-liquid separation, and the remaining organic matter was sieved through a 10 μm
- 153 mesh before mounting on slides.
- 154

#### 155 4.3. Palynological analyses

- 156 The samples were analyzed using a transmitted light microscope. Analysis was
- 157 based on the first 200 palynomorphs counted on each slide. The marine elements
- 158 (dinoflagellate cysts and microforaminiferal linings) were counted separately.
- 159 Taxonomic identification was based on the methods of Regali et al. (1974), Lima
- 160 (1978), Dino (1992, 1994), and Carvalho et al. (2019, 2022).
- 161

#### 162 4.4. Bioclimatic analysis

- 163 Palynomorphs are useful climatic indicators (bioclimatic groups) because of their
- 164 botanical affinities. However, identifying the spores and pollen grains of the parent
- 165 plant classified at the family level is often challenging. This study referred to the
- 166 literature (e.g., Dino, 1994; Carvalho, 2004; Souza-Lima and Silva, 2018; Jansonius et
- 167 al., 1976-1996) to identify the botanical affinities of the indicator species.





- 168 On the basis of botanical affinities and inferred paleoenvironmental conditions,
- 169 this study proposes five bioclimatic groups: hydrophytes, hygrophytes, tropical lowland
- 170 flora, upland flora, and xerophytes. These groups provide valuable insights into the
- 171 climate and vegetation of the study area.
- 172

## 173 **4.5. Wet-dry trend**

- 174 To support the bioclimatic group distribution, we used the Fs/X (fern spores
- 175 versus xerophytes) ratio. This ratio is based on the co-occurrence of fern spores and
- 176 xerophytic palynomorphs (Classopollis and polyplicate gnetalean pollen); therefore, it
- 177 can be used as an indicator of dry-wet trends (Carvalho et al., 2019). The ratio of fern
- 178 spores to xerophytic palynomorphs (Fs/X) was calculated as Fs/X=nFs/(nFs+nX),
- 179 where n is the number of specimens counted, Fs is the number of fern spores (non-
- 180 reworked), and X is the number of xerophytic pollen grains. In summary, Fs/X
- 181 approaching 1 implies high humidity, and that approaching -1 indicates low humidity.

182

## 183 **4.6. Diversity**

- 184 Shannon-Weaver diversity indices H (S) were calculated for all samples by using
- 185 PAST software (Hammer et al., 2001) to provide information for interpreting
- 186 paleoclimatic trends. Diversity H(S) considers the abundance of each species and is
- 187 used to characterize the diversity of the assemblages.
- 188
- 189
- 190





#### 191 4.7. Indicator species

| 192 | To reconstruct the late Aptian vegetation in the studied basins, we employed the         |
|-----|------------------------------------------------------------------------------------------|
| 193 | indicator species analysis (IndVal) method. This index was applied for the first time in |
| 194 | pre-Quaternary samples in the der Sergipe Basin (Carvalho et al., 2017).                 |
| 195 | The IndVal index determines the taxa strongly associated with particular groups          |
| 196 | of samples and is assumed to reflect the climatic conditions of those groups. It was     |
| 197 | calculated using the formula proposed by Dufrêne and Legendre (1997): IndValGroup        |
| 198 | k, Species j=100 × Ak,j × Bk,j, where Ak,j represents specificity, and Bk,j represents   |
| 199 | fidelity. We used PAST software (Hammer et al., 2001) to calculate these values.         |
| 200 | To ensure that our IndVal analysis fulfilled the criteria of ordination and climate-     |
| 201 | focused approach, we grouped the samples according to three climatic phases: pre-        |
| 202 | evaporitic, evaporitic, and post-evaporitic. This allowed us to identify the specific    |
| 203 | indicator species associated with each climatic phase and gain insights into the         |
| 204 | vegetation that existed during the late Aptian period.                                   |
| 205 |                                                                                          |

## 206 **5. Results**

207 Sixty-nine genera were identified in the 40 samples and were distributed into five 208 plant groups: bryophytes (four genera), ferns (17 genera), lycophytes (10 genera), 209 pteridosperms (one genus), gymnosperms (23 genera), and angiosperms (14 genera) 210 (Appendix 1) (Table 2). Twenty indeterminate morphotypes were found in ferns and 10 211 in angiosperms. Of the 69 genera identified, nine occurred in all the wells studied: 212 Afropollis, Callialasporites, Cicatricosisporites, Araucariacites, Classopollis, 213 Cyathidites, Deltoidospora, Equisetosporites, Verrucosisporites.





| 214 | The recognition of botanical affinities of the 69 genera was based on the literature         |
|-----|----------------------------------------------------------------------------------------------|
| 215 | (e.g., Dino 1992, Balme 1995; Antoniolli, 2001; Carvalho et al., 2017, Carvalho et al.,      |
| 216 | 2019, Carvalho et al., 2022) and the database of <i>fossilworks.org</i> . The suggested      |
| 217 | botanical affinity of the 69 genera was 94.2%. The 5.8% without botanical affinity           |
| 218 | refers to the group of angiosperms.                                                          |
| 219 | All bioclimatic groups were present in the studied sections (Table 3, Appendix 2).           |
| 220 | In general, the palynological assemblage is predominantly composed of the xerophytic         |
| 221 | bioclimatic group, characterized by a high abundance of Classopollis. The average            |
| 222 | abundance of xerophytes was 55.7%, ranging from 46.3% to 63.6% in the sections               |
| 223 | studied (Table 4). In sequence, the upland flora had an overall average abundance of         |
| 224 | 18.9% (ranging from 7.8% to 26%), with Araucariacites being the dominant taxon. The          |
| 225 | hygrophyte bioclimatic group is characterized by the presence of Cicatricosisporites,        |
| 226 | which had an average abundance of 18.6% (ranging from 11.4% to 28.4%). By contrast,          |
| 227 | the hydrophyte bioclimatic group is the least abundant, with an overall average of $0.7\%$ , |
| 228 | and is dominated by the genus Crybelosporites. Regarding diversity, the Shannon-             |
| 229 | Wiener indices (H') obtained for the 40 samples showed an overall average of H'= $2.0$ ,     |
| 230 | which ranged from H='1.6 in the VN-1 section to H'= $2.2$ in section PE-1 (Table 4).         |
| 231 | The values of the wet-dry trend (Fs/X ratio) ranged from 0.19 (dry) in section CI-1 to       |
| 232 | 0.39 (wet) in EGST-1(wet) (Table 4).                                                         |
| 233 |                                                                                              |
| 234 | 5.1. Stratigraphic distribution of bioclimatic groups in EGST-1 well                         |
| 235 | Although xerophytes are dominant overall, EGST-1 well exhibits a higher                      |
| 236 | abundance of hygrophytes (24.9%) due to moderate to high occurrences of                      |
| 237 | Cicatricosisporites and trilete psilate (e.g., Cyathidites), especially at the base of the   |

238 well (Fig. 3). Additionally, the abundance of hygrophytes, tropical lowland flora, and





| 239 | upland flora increases toward the upper sections, whereas the abundance of xerophytes       |
|-----|---------------------------------------------------------------------------------------------|
| 240 | decreases (Fig. 4). The Shannon-Wiener indices (H') showed an overall average of H'=        |
| 241 | 2.1, slightly above the general average (H'= 2.0). The Fs/X ratio had the highest value     |
| 242 | for all sections (0.38), above the overall average (0.28), indicating more humid            |
| 243 | conditions (Table 4).                                                                       |
| 244 |                                                                                             |
| 245 | 5.2. Stratigraphic distribution of bioclimatic groups in VN-1 well                          |
| 246 | Similar to the EGST-1 well, the VN-1 well is composed of four samples from the              |
| 247 | Bragança Formation, in which xerophytes dominate. However, unlike the former well,          |
| 248 | hygrophytes exhibit the highest average abundance (28.4%) among all studied wells,          |
| 249 | primarily because of the abundance of trilete psilate. Despite few samples, an increasing   |
| 250 | trend of hygrophytes, tropical lowland flora, and upland flora was observed, with a         |
| 251 | significant peak in hygrophytes (Fig. 4). The average diversity of H'=1.6 is the lowest     |
| 252 | for the studied basins, below the overall average (H'= $2.0$ ). The Fs/X ratio was 0.31,    |
| 253 | above the overall average $(0.28)$ .                                                        |
| 254 |                                                                                             |
| 255 | 5.3. Stratigraphic distribution of bioclimatic groups in PR-1 well                          |
| 256 | The section comprises four samples from the Codó Formation. Notably, the PR-1               |
| 257 | well exhibits the lowest average abundance of xerophytes (46.3%) (Table 4). However,        |
| 258 | it shows the highest average abundance in the tropical lowland flora group (20.4%) of       |
| 259 | all the wells studied, driven by the presence of the genus Afropollis. In general, an       |
| 260 | increasing trend toward hygrophytes, upland flora, and mainly tropical lowland flora        |
| 261 | was observed (Fig. 5). The average diversity was $H' = 2.1$ in this well. This value is one |
| 262 | of the highest values among all the wells studied. This high diversity is mainly            |





| 263 | attributed to the significant number of species belonging to the tropical lowland flora   |
|-----|-------------------------------------------------------------------------------------------|
| 264 | group. The Fs/X ratio was 0.25, slightly below the overall average $(0.28)$ (Table 4).    |
| 265 |                                                                                           |
| 266 | 5.4. Stratigraphic distribution of bioclimatic groups in PE-1 well                        |
| 267 | The PE-1 well shows a clear decreasing trend upward of the xerophytes, which              |
| 268 | did not exceed 20% (Fig. 6). By contrast, hygrophytes and upland flora show a             |
| 269 | conspicuous increase. Highlight for the upland flora group show an average of $26\%$      |
| 270 | driven by the genus Araucariacites. The average diversity of H'=2.2 is the highest for    |
| 271 | the basins. This average diversity is due to the many species of upland flora and         |
| 272 | hygrophytes. The Fs/X ratio was 0.28, the same as the overall average $(0.28)$ (Table 4). |
| 273 |                                                                                           |
| 274 | 5.5. Stratigraphic distribution of bioclimatic groups in RL-1 well                        |
| 275 | The section consists of seven samples from the Codó Formation. The xerophytic             |
| 276 | bioclimatic group dominated the entire section, with no sudden changes in the             |
| 277 | abundance curve observed, except at the base of the section, where the hygrophytes,       |
| 278 | tropical plain flora, and upland flora groups together reached almost 40% (Fig. 7). The   |
| 279 | average diversity of H'=1.9 is the second lowest for the studied basins. The Fs/X ratio   |
| 280 | was 0.24, slightly below the overall average $(0.28)$ (Table 4).                          |
| 281 |                                                                                           |
| 282 | 5.6. Stratigraphic distribution of bioclimatic groups in CI-1 well                        |
| 283 | The Parnaíba Basin is represented by one well, which comprises 13 samples from            |
| 284 | the Codó Formation. The palynological assemblage of this section was dominated by         |
| 285 | the xerophytic bioclimatic group, with a high average of 63.6%, largely because of the    |
| 286 | abundance of Classopollis and Equisetosporites. The dendrogram shown in Fig. 8            |
| 287 | reveals two intervals: the base with a greater balance between xerophytes and the other   |





- 288 groups, especially the upland flora (15.9%) (Table 4). The Fs/X ratio recorded the
- lowest value in all sections (0.19), which was below the overall average (0.28),
- 290 indicating drier conditions (Table 4). However, despite this, the average diversity of
- 291 H'=2.0 was one of the highest, with the same value as the overall average of 2.0.
- 292

#### 293 5.7. Climatic phases

294 All six sections were individually analyzed for palynology. However, a composite 295 section was constructed (Table 5) based on the stratigraphically evident chronological 296 distribution of the climatic phases in each studied section. The composite section of the 297 Bragança-Viseu, São Luís, and Parnaíba basins consists of 40 samples, with 24 samples 298 from the pre-evaporitic phase, eight from the evaporitic phase, and eight from the post-299 evaporitic phase (Table 5). In general, the composite section highlights the bioclimatic 300 groups of hygrophytes (18.8%) and tropical lowland flora. The diversity and Fs/X ratio 301 curves showed strong synchrony, indicating a relation between diversity and humidity 302 (Fig. 9). No marine elements were recorded in these sections.

303 During the pre-evaporitic phase, there is a higher abundance of xerophytes,

304 hygrophytes, and upland flora, but with strong oscillations observed in their respective

305 curves. The dendrogram in Fig. 9 identifies two intervals within this phase: with

306 significant values of xerophytes at the base but with a decreasing trend toward the top.

- 307 The interval above the xerophyte curve exhibits an upward trend. The diversity and
- 308 Fs/X ratio curves show synchrony but with a decreasing trend toward the top. The
- 309 indicator species (IndVal) identified for the pre-evaporitic phase, *Deltoidospora* spp.
- 310 (Cyatheaceae-Dicksoniaceae) is related to the montane rainforest, suggesting more
- 311 humid conditions (Table 5).





| 312 | The evaporitic phase, which corresponds to the gypsum layers of the Codó                 |
|-----|------------------------------------------------------------------------------------------|
| 313 | Formation, is characterized by the highest average of the xerophytic bioclimatic group   |
| 314 | in the composite section (Table 5). Additionally, the average abundance of the tropical  |
| 315 | lowland flora group is also high, driven by the genus Afropollis. Surprisingly, the mean |
| 316 | diversity is high during this phase, but the mean Fs/X ratio is the lowest. The high     |
| 317 | diversity in arid conditions is due to the great diversity of species in the xerophytic  |
| 318 | group, such as Classopollis classoides, Equisetosporites maculosus, and                  |
| 319 | Gnetaceaepollenites jansonius. The IndVal for the evaporitic phase is Afropollis spp.    |
| 320 | related to tropical lowland flora (Table 5).                                             |
| 321 | The post-evaporitic phase, which includes part of a section of the Codó                  |
| 322 | Formation, is characterized by a significant decrease in the dominance of the xerophytic |
| 323 | bioclimatic group; lower average abundance (47%) in PR-1; and the clear dominance of     |
| 324 | hygrophyte groups, including tropical lowland flora and upland flora. The dendrogram     |
| 325 | reveals a break between this phase and the evaporitic phase (Fig. 9). In general, this   |
| 326 | reflects an inversion in abundance between groups related to humidity (hygrophytes,      |
| 327 | hydrophytes, tropical flora, and upland flora) and groups related to drier conditions    |
| 328 | (xerophytes) (Fig. 9). In this phase, the indicator species is Deltoidospora spp.,       |
| 329 | suggesting more humid conditions for pre- and pro-evaporitic phases.                     |
| 330 |                                                                                          |
| 331 | 6. Discussion                                                                            |

The data obtained from these sections provide clear evidence of the dominance of the xerophytic bioclimatic group during the late Aptian in Brazilian sedimentary basins. This information supports that in the literature that suggests an essentially arid climate during this period (e.g., Lima, 1983; Suguio and Barcelos, 1983; Petri, 1983; Rossetti et





| 336 | al., 2003; Hay and Floegel, 2012, Carvalho et al., 2017, 2019, 2022). These authors        |
|-----|--------------------------------------------------------------------------------------------|
| 337 | attributed this aridity to the predominance of conifers from the Cheirolepidiaceae family  |
| 338 | and their Classopollis pollen grains. However, climatic oscillations were identified       |
| 339 | during this period, indicated by bioclimatic groups related to the humid conditions:       |
| 340 | hydrophytes, hygrophytes, tropical lowland flora, and upland flora. A relationship         |
| 341 | between these groups has been suggested (e.g., Carvalho et al., 2017, 2019, 2022). In      |
| 342 | this study, principal component analysis (PCA) was conducted between bioclimatic           |
| 343 | groups that exhibited patterns similar to those observed in the literature (e.g., Carvalho |
| 344 | et al., 2017, 2019, 2022). The PCA revealed a positive correlation among hygrophytes,      |
| 345 | hydrophytes, tropical lowland flora, and upland flora, whereas xerophytes show a           |
| 346 | negative relationship on the first axis (Component 1) (Fig. 10), explaining more than      |
| 347 | 70% of the variation. Component 1 characterizes the wet-dry trend.                         |
| 348 | The sections of the São Luís Basin (PE-1, RL-1, and PR-1) showed the lowest                |
| 349 | abundance of xerophytic flora, followed by the sections of the Bragança-Viseu Basin        |
| 350 | (VN-1 and EGST-1) and the CI-1 section (Parnaíba Basin) farther south (Fig. 11A).          |
| 351 | More humid conditions also were suggested by Santos et al. (2022) for the São Luis         |
| 352 | Basin. This study utilized palynological data and PCA analysis to propose the existence    |
| 353 | of a wet phase during the late Aptian in the São Luis Basin. Through the analysis of the   |
| 354 | abundance of Araucariacites and fern spores, as well as the presence of the genus          |
| 355 | Classopollis associated with carbonate sedimentation in two semi-arid intervals, an        |
| 356 | intermediate humid interval was identified. The authors suggested that the data were       |
| 357 | sufficient to identify a pre-Albian humid belt, which challenges the view of exclusively   |
| 358 | arid Gondwana during the Aptian and supports the presence of a wet phase.                  |
| 359 | As also suggested by Carvalho et al. (2022), we compared the studied sections              |
| 360 | with sections in the Espírito Santo Basin, located much farther south (at 20°S). We        |

15





| 361 | found that the studied basins had a lower abundance of xerophytic flora than the         |
|-----|------------------------------------------------------------------------------------------|
| 362 | Espírito Santo Basin did (Fig. 11B-C). The decreasing trend in aridity observed from     |
| 363 | the southeast (Espírito Santo Basin) to the northeast (Fig. 11B-C) coincides with the    |
| 364 | location of the hot and humid belt attributed to the ITCZ (Ohba et al., 2010, Chaboureau |
| 365 | et al., 2012, 2014; Scotese, 2016). Notably, the approach to the ITCZ belt, where xeric  |
| 366 | restrictions are milder, reflected even in the most aridity phase, the evaporitic phase, |
| 367 | whose indicator species was the Afropollis spp. of the lowland tropical flora. This      |
| 368 | indicates that the ITZC must have had diminished aridity. The genus Afropollis has       |
| 369 | been associated with hot, humid climates. According to Carvalho et al. (2022), this      |
| 370 | genus exhibits the weakest negative correlation with xerophytic flora (e.g.,             |
| 371 | Classopollis).                                                                           |
| 372 | The ITCZ belt proposed by Scotese (2016) for the Aptian covers the entire                |
| 373 | African continental paleoequator. However, although very close, it did not reach South   |
| 374 | America (Fig. 11B). Palynological analyses conducted by Deaf et al. (2020) on the late   |
| 375 | Aptian material of the Dahab Formation (Mathruh Basin, Egypt) indicated a                |
| 376 | predominance of fern spores from the hygrophyte bioclimatic group (e.g.,                 |
| 377 | Triplanosporites, Cicatricosisporites) and uplands (e.g. Deltoidospora, Araucariacites), |
| 378 | accounting for approximately 60% on average. This finding suggests that the formation    |
| 379 | is characterized by humid conditions.                                                    |
| 380 | The xerophytic flora (Classopollis and Equisetosporites) in the Dahab Formation          |
| 381 | averaged approximately 25%. Considering the climatic belts proposed by Scotese           |
| 382 | (2016, 2021), this formation occurred "inside" the ITCZ, which is reflected in the       |
| 383 | prevalence of bioclimatic groups associated with more humid conditions. The              |
| 384 | abundance of xerophytic flora in the Dahab Formation (Mathruh Basin) was lower than      |
| 385 | that in the sections studied. This difference was particularly significant when compared |

16





| 386 | with the Espírito Santo Basin, where the abundance of xerophytic flora was 87.3%, as      |
|-----|-------------------------------------------------------------------------------------------|
| 387 | opposed to 25% in the Dahab Formation (Fig. 11C). Notably, a significant contributor      |
| 388 | to the humidity in the Dahab Formation was likely a marine influence, which was not       |
| 389 | present in the sections studied.                                                          |
| 390 |                                                                                           |
| 391 | 7. Conclusion                                                                             |
| 392 | The Aptian sections studied have well-preserved palynological diversity                   |
| 393 | dominated by the genera Classopollis (Cheirolepidiaceae) and Araucariacites               |
| 394 | (Araucariaceae). Some genera of ferns are also abundant such as Cicatricosisporites       |
| 395 | (Anemiaceae), Verrucosisporites (Osmundaceae), and Deltoidospora (Cyatheaceae).           |
| 396 | Five bioclimatic groups were identified and proposed for interpretation:                  |
| 397 | hydrophytes, hygrophytes, tropical lowland flora, upland flora, and xerophytes. The       |
| 398 | bioclimatic groups provide evidence that the climate during the late Aptian was arid.     |
| 399 | However, when considering the distribution curves of bioclimatic groups, as well as the   |
| 400 | indicator species (IndVal) and diversity, a clear upward trend toward increased humidity  |
| 401 | was observed.                                                                             |
| 402 | The late Aptian period was characterized by three distinct climatic phases: pre-          |
| 403 | evaporitic, evaporitic, and post-evaporitic. During the pre-evaporitic phase, despite the |
| 404 | dominance of xerophytic flora, there were episodes of humidity, evidenced by indicator    |
| 405 | species such as Deltoidospora spp. The evaporitic phase was dominated by xeric            |
| 406 | elements, although the moderate to high abundance of lowland tropical flora, confirmed    |
| 407 | by Afropollis spp. as an indicator species, indicated some periods of humidity. The post- |
| 408 | evaporitic phase was marked by a lower abundance of xerophytic elements and a clear       |





- 409 dominance of groups associated with wet conditions, mainly the upland flora, 410 suggesting a wetter climate during this phase. 411 The climatic variation during the late Aptian is reflected in the palynological 412 assemblages, with the arid phase being dominated by the genus Classopollis and other 413 xerophytic bioclimatic group indicators. The wet phase is marked by a significant 414 decrease in xerophytes and a high abundance and diversity of Araucariacites, fern 415 spores, and other genera related to highland, hydrophytic, and hygrophytic bioclimatic 416 groups. The "mirror effect" observed in the frequency curves highlights the ecological 417 differences between the arid and humid trend groups. 418 According to our findings, vegetation dynamics were affected by a combination of 419 the Intertropical Convergence Zone (ITCZ) and the opening of the South Atlantic Ocean 420 during the late Aptian period. The influence of the ITCZ is currently stronger in the 421 north-central region of South America. Notably, climate evolution during the late 422 Aptian in the South Atlantic led to increased humidity, which was closely linked to 423 plant diversity and marine influences. 424 425 Appendices 426 427
- 428
- 429
- 430





Appendix 1. Eleven plates with the most relevant palynomorphs recorded in the studied wells.

## PLATE 1

- A. Stereisporites sp. Pflug, 1953 (RL-1).
- B. Todisporites sp. Couper, 1958 (RL-1).
- C. Deltoidospora diaphana Wilson & Webster, 1946 (EGST-1).
- D-E. Deltoidospora minor (Couper 1953) Pocock 1970<sup>a</sup> (CI-1).
- F. Cyathidites sp. Couper, 1953 (CI-1).
- G. Cyathidites minor Couper, 1953 (CI-1).
- H. Biretisporites sp. Delcourt & Sprumont, 1955 emend. Delcourt, Dettmann & Hughes, 1963 (CI-1).
- I. Biretisporites Pontoniaei Delcourt & Sprumont, 1955 (RL-1).
- J. Undulatisporites sp.? Thomson & Pflug, 1953 (CI-1).
- K. Granulatosporites sp. Ibrahim, 1933 (CI-1).
- L. Verrucosisporites sp. Ibrahim, 1933 emend. Potonié & Kremp, 1955 (CI-1).

- A. Leptolepidites psarosus Norris, 1966 (CI-1).
- B. Leptolepidites verrucatus Couper, 1953 (CI-1).
- C-D. Uvaesporites sp. Doring, 1965 (CI-1).
- E. Apiculatisporis sp. Potonié & Kremp, 1954 (CI-1).
- F. Echinatisporis sp. Krtuzsch, 1959 (CI-1).
- G. Hamulatisporis sp. Krtuzsch, 1959 (RL-1).
- H. Cicatricosisporites sp. Potonié & Gelletch, 1933 (EGST-1).





- I. Cicatricosisporites avnimelechi Horowitz, 1970 (CI-1).
- J-K. Cicatricosisporites brevilaesuratus Couper, 1958 (EGST-1).
- L. Cicatricosisporites cf. Cicatricosisporites? sp.5 Duarte, 2011 (EGST-1).

## PLATE 3

- A B. Lycopodiumsporites sp. Thiegart, 1938 (RL-1).
- C. Klukisporites variegatus Couper, 1958 (CI-1).
- D. Klukisporites sp. Couper, 1958 (RL-1).
- E. Klukisporites foveolatus Pocock, 1964 (EGST-1).
- F. Klukisporites pseudoreticulatus Couper, 1958 (CI-1).
- G. Foveotriletes sp. Hammen, 1956 (CI-1).
- H. Gleicheniidites Senonicus Ross, 1949 (PR-1).
- I. Camarozonaesporites sp. Pant, 1954 ex. Pontonié, 1956 emend. Klaus, 1960 (VN-1).
- J. Antulsporites sp. Archangelsky & Gamerro, 1966 (CI-1).
- K. Cingulatisporites verrucatus Regali, Uesugui & Santos, 1974 (PE-1)
- L. Distaltriangulisporites sp. Singh, 1971 (RL-1).
- M. Cingutriletes Pierce, 196 (PR-1).

- A. Matonisporites silvai Lima, 1978 (PR-1).
- B-C. Appendicisporites sp. Weiland & Krieger, 1953; (PR-1).
- D. Aequitriradites sp. Delcourt & Sprumont, 1955 emend. Dettmann, 1963 (RL-
  - 1).





- E. Perotrilites sp. Erdtman, 1947 ex. Couper, 1953 (RL-1).
- F. Crybelosporites pannuceus Brenner, 1963 emend. Srivastava, 1975 (RL-1)
- G. Paludites mameolatus Lima, 1978 (PR-1).
- H. Densoisporites sp. Weyland & Krieger, 1953 (EGST-1).
- I. Triporoletes sp. Mtchedlishvili, 1960 (RL-1).
- J. Reticulosporis sp. Krutzsch, 1959 (PR-1).
- K. Reticulosporis foveolatus Krutzsch, 1959 (EGST-1).
- L. Callialasporites trilobatus Dev, 1961 (CI-1).

- A. Callialasporites dampiere Dev, 1961 (CI-1).
- B. Complicatisaccus cearensis Regali, 1989c (PR-1).
- C. Cedripites sp. Wodehouse, 1933 (CI-1).
- D. Vitreisporites pustulosus Regali, 1987 (PR-001-MA); (PE-1).
- E. Vitreisporites microsaccus Jersey, 1964 (PR-1).
- F. Vitreisporites pallidus Nilsson, 1958 (PR-1).
- G. Rugubivesiculites bahiasulensis Pierce, 1961 (RL-1).
- H. *Inaperturopollenites* sp. (Pflug, 1952 ex. Thomsom e Pflug, 1953, Pontonié, 1958) Pontonié, 1966 (RL-1).
- I. Araucariacites sp. Cookson, 1947 ex Coouper, 1953 (CI-1).
- J. Araucariacites australis Cookson, 1947 (CI-1).
- K. Araucariacites limbatus (Balme) Habib, 1957 (EGST-1).
- L. Araucariacites pergranulatus Volkheimer, 1968 (EGST-1).





## PLATE 6

- A. Araucariacites sp. S. Cl. 265 A Jardiné & Magloire, 1965 (EGST-1).
- B. Balmeopsis sp.? Archangelsky, 1977 (PE-1).
- C. Balmeopsis limbatus Archangelsky, 1977 (EGST-1).
- D. Cingulatipollenites sp.? Saad & Ghazaly, 1976 (PE-1).
- E. Cingulatipollenites aegyptiaca Saad & Ghazaly, 1976 (EGST-1)
- F. Spheripollenites sp. Couper, 1958 (RL-1).
- G. Spheripollenites scabratus Couper, 1958 (EGST-1).
- H. Sergipea variverrucata Regali, Uesugui & Santos, 1974 emend. Regali, 1987 (PR-1).
- I. Sergipea simplex Regali, 1987 (PE-1).
- J. Uesuguipollenites callosus Dino, 1992 (RL-1).
- K. Classopollis classoides Pflug, 1953 (CI-1).
- L. Classopollis brasiliensis Herngreen, 1973 (PE-1).

- A. Equisetosporites aff. elegans Lima, 1978 (CI-1).
- B. Equisetosporites dudarensis (Deák, 1964) Lima, 1980 (CI-1).
- C. Equisetosporites ambuguus Hedlund, 1966 (RL-1).
- D. Equisetosporites consinnus Singh, 1964 (PR-1).
- E. Equisetosporites leptomatus Lima, 1978 (CI-1).
- F. Equisetosporites luridus Lima, 1978 (CI-1).
- G. Equisetosporites lanceolatus Lima, 1978 (CI-1).
- H. Equisetosporites aff. leptomatus Lima, 1978 (CI-1).





- I. Elateropollenites bicornis Regali, 1989e (EGST-1).
- J. Elateropollenites dissimilis Regali, 1989e (EGST-1).
- K. Classopollis intrareticulatus Volkheimer, 1972 (PR-1).
- L. Equisetosporites aff. luridus Lima, 1978 (RL-1).

## PLATE 8

- A. Equisetosporites maculosus Dino, 1992 (CI-1).
- B. Equisetosporites minuticostatus Lima, 1978 (PR-1).
- C. Equisetosporites aff. minuticostatus Lima, 1978 (CI-1).
- D. Equisetosporites ovatus (Pierce) Singh, 1961 (CI-1).
- E. Gnetaceaepollenites sp. Thiegart, 1938 (CI-1).
- F. Gnetaceaepollenites consisus Regali, 1989c (CI-1).
- G. Gnetaceaepollenites jansonii Pocock, 1964 (CI-1).
- H. Gnetaceaepollenites uesuguii Lima, 1978 (CI-1).
- I. Gnetaceaepollenites undulatus Regali, Uesugui & Santos, 1974 (RL-1).
- J. Steevesipollenites sp. Stover, 1964 (CI-1)..
- K. Singhia sp. Srivastava, 1968 (PR-1).
- L. Singhia punctata Lima, 1978 (EGST-1)

- A. Regalipollenites sp. Lima, 1978 (PR-1).
- B. Eucommiidites sp. (Erdtman, 1948) Hugues, 1961 (CI-1).
- C. Eucommiidites troedssonii (Erdtman, 1948) Hugues, 1961 (RL-1).
- D. Arecipites microfovolatus Ibrahim, 2002 (CI-1)





- E. Cycadopites sp. Wilson e Webster, 1946 (PE-1).
- F. Dejaxpollenites foveoreticulatus Dino, 1992 (EGST-1)
- G. Bennettitaepollenites sp. Thiegart, 1949 (CI-1)
- H. Cavamonocolpites sp. Lima, 1978 (RL-1).
- I. Cavamonocolpites sp.1 Dino, 1992 (CI-1).
- J. Clavatipollenites sp. Couper, 1958 (EGST-1).
- K. Clavatipollenites huguesi Couper, 1958 (PE-1).
- L. Stellatopollis sp. Doyle, Van Campo e Lugardon, 1975 (VN-1).

- A. Retimonocolpites sp. Pierce, 1961 (PR-1).
- B. Monocolpopollenites sp. Thomsom & Pflug, 1953 emend. Nichols, Ames & Traverse, 1973 (CI-1).
- C. Brenneripollis reticulatus Júhasz & Góczan, 1985 (PE-1).
- D. Afropollis jardinus Doyle, Jardiné e Doeren Kamp, 1982 (CI-1).
- E. Afropollis aff. jardinus Doyle, Jardiné e Doeren Kamp, 1982 (PR-1).
- F. Psiladicolpites papillatus ? Regali, 1989c (EGST-1).
- G. Tricolpites sp. Cookson, 1947 ex Couper, 1953 (EGST-1).
- H. Rousea sp. Srivastava, 1969 (PR-1).
- I. Rousea georgensis (Brenner, 1963) Dettmann, 1973 (PR-1).
- J. *Trisectoris reticulatus* (Regali, Uesugui & Santos, 1974b) Heimhofer & Hochuli, 2010 (EGST-1).
- K. Retiquadricolpites sp. Regali, 1989 (CI-1).
- L. Exesipollenites tumulus Balme, 1957 (PR-1).





- A. Cretacaeiporites sp.? Herngreen, 1973 (RL-1).
- B. Schizosporis sp. Cookson e Dettmann, 1959 (PE-1).
- C. Schizosporis parvus Cookson e Dettmann, 1959 (RL-1).
- D. Schizosporis spriggi Cookson e Dettmann, 1959 (EGST-1).
- E. Acritarch Evitt 1963 (CI-1).
- F. Cymatiosphera ? Wetzel, 1933 (CI-1).
- G. Duvernaysphaera sp. (Staplin, 1961) Deunff, 1964 (CI-1).
- H. Maranhites sp. Brito, 1965 emend. González, 2009 (CI-1).
- I. Tasmanites sp. Newton, 1875 emend. Schopf, Wilson & Bentall, 1944 (CI-1).
- J. Scylaspora sp. Burgess & Richardson, 1995 (EGST-1).
- K. Raistrickia sp.? Schopf etal. 1944 emend. Potonié & Kremp, 1954 (VN-1).
- L. Chomotriletes sp. Naumova, 1937 (VN-1).



















28







29













31







10 µm



















35











|                   |          | Depth   |      |     |      |      |      |      |      |        |
|-------------------|----------|---------|------|-----|------|------|------|------|------|--------|
| Lithostratigraphy | Sections | (m)     | HG   | HD  | TLF  | UF   | XP   | H'   | Fs/X | Marine |
|                   |          | 1507,6  | 15,7 | 1,5 | 31,0 | 14,2 | 37,6 | 2,26 | 0,31 | 0      |
|                   |          | 1509,7  | 19,6 | 0,5 | 8,2  | 29,4 | 42,3 | 2,19 | 0,32 | 0      |
|                   | PR-1     | 1510,6  | 15,4 | 0,0 | 22,0 | 15,4 | 47,3 | 1,88 | 0,25 | 0      |
|                   |          | 1513,1  | 6,6  | 2,0 | 20,2 | 13,1 | 58,1 | 2,04 | 0,13 | 0      |
|                   |          | 1562,0  | 44,4 | 0,0 | 8,7  | 33,2 | 13,8 | 2,59 | 0,76 | 0      |
|                   |          | 1566,0  | 14,4 | 0,6 | 2,2  | 30,0 | 52,8 | 2,21 | 0,22 | 0      |
|                   | PE-1     | 1568,5  | 4,2  | 0,0 | 20,8 | 16,7 | 58,3 | 1,99 | 0,07 | 0      |
|                   |          | 1570,0  | 4,1  | 0,0 | 2,4  | 24,1 | 69,4 | 1,90 | 0,06 | 0      |
|                   |          | 1173,5  | 1,6  | 0,0 | 23,8 | 6,3  | 68,3 | 2,22 | 0,02 | 0      |
|                   |          | 1174,1  | 12,0 | 4,0 | 10,0 | 12,0 | 62,0 | 2,06 | 0,21 | 0      |
|                   |          | 1175,5  | 20,0 | 0,0 | 14,5 | 1,8  | 63,6 | 2,63 | 0,24 | 0      |
|                   | RL-1     | 1235,25 | 18,8 | 1,6 | 10,2 | 7,8  | 61,7 | 2,57 | 0,25 | 1      |
|                   |          | 1237,0  | 19,8 | 0,0 | 4,9  | 14,2 | 61,1 | 2,61 | 0,24 | 0      |
| Cadé Farmatian    |          | 1239,5  | 27,0 | 1,6 | 6,3  | 6,3  | 58,7 | 1,85 | 0,33 | 0      |
| Codo Formation    |          | 1240,3  | 11,2 | 0,5 | 13,8 | 5,9  | 68,6 | 1,91 | 0,15 | 0      |
|                   |          | 820,6   | 6,5  | 0,0 | 15,7 | 0,0  | 77,8 | 1,78 | 0,08 | 0      |
|                   |          | 834,5   | 3,7  | 0,0 | 3,7  | 0,0  | 92,6 | 1,30 | 0,04 | 0      |
|                   |          | 836,0   | 0,0  | 0,0 | 0,0  | 10,2 | 89,8 | 1,66 | 0,00 | 0      |
|                   |          | 837,0   | 14,7 | 2,7 | 6,0  | 48,9 | 27,7 | 2,28 | 0,18 | 0      |
|                   |          | 838,0   | 15,8 | 0,0 | 1,5  | 9,8  | 72,9 | 1,74 | 0,06 | 0      |
|                   |          | 845,0   | 4,8  | 0,0 | 1,4  | 23,3 | 70,5 | 2,07 | 0,33 | 0      |
|                   | CI-1     | 855,0   | 5,2  | 0,0 | 5,2  | 5,2  | 84,5 | 1,10 | 0,13 | 0      |
|                   |          | 855,9   | 10,8 | 0,6 | 10,1 | 3,8  | 74,7 | 2,11 | 0,38 | 0      |
|                   |          | 857,6   | 21,6 | 2,6 | 4,2  | 31,6 | 40,0 | 2,64 | 0,10 | 1      |
|                   |          | 866,55  | 8,6  | 0,5 | 5,6  | 6,6  | 78,8 | 2,27 | 0,25 | 1      |
|                   |          | 866,65  | 16,9 | 1,6 | 4,4  | 21,3 | 55,7 | 2,26 | 0,21 | 0      |
|                   |          | 867,8   | 16,0 | 0,0 | 16,6 | 7,1  | 60,4 | 2,83 | 0,39 | 0      |
|                   |          | 888,75  | 19,3 | 0,0 | 12,9 | 22,9 | 45,0 | 2,28 | 0,30 | 0      |
|                   |          | 1287,9  | 55,0 | 0,0 | 0,0  | 5,0  | 40,0 | 1,56 | 0,58 | 0      |
|                   |          | 1289,88 | 18,4 | 0,0 | 5,3  | 18,4 | 57,9 | 1,94 | 0,24 | 0      |
|                   | VIN-1    | 1315,7  | 6,7  | 0,6 | 1,2  | 15,3 | 76,1 | 1,57 | 0,09 | 0      |
|                   |          | 1317,69 | 33,3 | 0,0 | 0,0  | 0,0  | 66,7 | 1,29 | 0,33 | 0      |
|                   |          | 676,44  | 19,2 | 0,5 | 14,8 | 54,4 | 11,0 | 2,54 | 0,64 | 0      |
| Bragança          |          | 732,3   | 30,1 | 2,4 | 3,0  | 8,4  | 56,0 | 2,65 | 0,37 | 0      |
| Formation         |          | 733,3   | 8,1  | 0,0 | 4,3  | 7,6  | 80,0 | 1,48 | 0,09 | 0      |
|                   | FOOT 4   | 735,3   | 13,7 | 3,0 | 0,5  | 12,2 | 70,6 | 1,97 | 0,19 | 0      |
|                   | EGSI-1   | 1017,7  | 25,6 | 1,2 | 0,6  | 22,6 | 50,0 | 2,42 | 0,35 | 0      |
|                   |          | 1789,1  | 19,0 | 0,0 | 1,7  | 6,3  | 73,0 | 1,83 | 0,21 | 0      |
|                   |          | 1791,0  | 26,7 | 0,0 | 4,4  | 6,7  | 62,2 | 1,92 | 0,30 | 0      |
|                   |          | 1846,0  | 57.1 | 0.0 | 14.3 | 14.3 | 14.3 | 1.95 | 0,80 | 0      |

Appendix 2. Bioclimatic groups (percentages) of studied wells. Legend: HG= hygrophytes; HD= hydrophytes; TLF= tropical lowland flora; UF= upland flora; XP= xerophytes; H'= diversity; Fs/X= fern spores/xerophytes.





#### 431 Acknowledgements

- 432 The research was funded by CENPES/PETROBRAS Grant No. 2017/00192-8 (to
- 433 M.A.C.), registered by the National Petroleum Agency (ANP) as SAP 4600558879. We
- 434 CENPES/PETROBRAS for the opportunity to study the data from wells, respectively,
- 435 J.R. Maizatto (CENPES/PETROBRAS) for selecting wells and assistance with samples,
- 436 and C. Medeiros and N. Reis (Geological Survey of Brazil-CPRM) for supporting us
- 437 with infrastructure in accordance with the technical-scientific agreement
- 438 (48035.000153/2020-38). We thank the A. Santos (iitOceaneon/UNISINOS) R.RC.
- 439 Ramos (Museu Nacional/UFRJ) for their helpful comments.

440

#### 441 **Data availability**

- 442 The data and code used in this paper are deposited at CENPES, PETROBRAS, Rio de
- 443 Janeiro, RJ, Brazil (wells VN-1, EGST-1, RL-1, PE-1, CI-1, and PR-1). Additional
- 444 information on samples (wells VN-1, EGST-1, RL-1, PE-1, CI-1 and PR-1) can be
- 445 accessed in www.anp.gov.br.

446

#### 447 Author contributions

- 448 M.C.S.G and M.A.C. led the writing with contributions of all coauthors; M.C.S.G.,
- 449 C.C.L, G.S., N.P.S. and G.C.C. collected the palynological data and M.C.S.G. and
- 450 M.A.C. carried out the pollen data analysis.

451

#### 452 Competing interests

453 The authors declare no competing interests.





| 454 | References                                                                            |
|-----|---------------------------------------------------------------------------------------|
| 455 | Antonioli L.: Estudo palinocronoestratigráfico da Formação Codó – Cretáceo Inferior   |
| 456 | do Nordeste brasileiro, PhD thesis. Universidade Federal do Rio de Janeiro, Rio       |
| 457 | deJaneiro, Brazil, 265 pp., 2001.                                                     |
| 458 | Balme B.E.: Spores and pollen grains from the Mesozoic of Western Australia.          |
| 459 | C.S.I.R.O, Australia, Commonwealth Scientific and Industrial Research                 |
| 460 | Organization. Coal Research Section. Reference, Melbourne, T.C., 25, 1-48,            |
| 461 | 1957.                                                                                 |
| 462 | Balme B.E.: Fossil in situ spores and pollen grains: an annotated catalogue. Rev.     |
| 463 | Palaeobot. Palynol., 87, 81-323, 1995.                                                |
| 464 | Batten D.J.: Wealden palaeocology from the distribution of plant fossils. Proc. Geol. |
| 465 | Ass., 85, 433-458, 1975.                                                              |
| 466 | Carvalho M. C., Lana C. C., Bengtson P., Sá, N. P.: Late Aptian (Cretaceous) climate  |
| 467 | changes in northeastern Brazil: A reconstruction based on indicator species           |
| 468 | analysis (IndVal). Palaeogeogr. Palaeoclimatol. Palaeoecol.485, 553-560, 2017.        |
| 469 | Carvalho M.A.: Palynological assemblage from Aptian/Albian of the Sergipe Basin:      |
| 470 | paleoenvironmental reconstruction. Rev. Bras. Paleontol., 7, 159-168, 2004.           |
| 471 | Carvalho M.A., Bengtson P., Lana C.C., Sá, N.P., Santiago G., Giannerini M.C.S.: Late |
| 472 | Aptian (Early Cretaceous) dry-wet cycles and their effects on vegetation in the       |
| 473 | South Atlantic: Palynological evidence. Cretaceous Res., 100, 172-183, 2019.          |
| 474 | Carvalho, M.A., Bengtson, P., Lana, C.C.: Late Aptian (Cretaceous) paleoceanography   |
| 475 | of the South Atlantic Ocean inferred from dinocyst communities of the Sergipe         |
| 476 | Basin, Brazil. Paleoceanography, 31, 2–26, 2016                                       |





| 477 | Carvalho, M.A., Lana, C.C., Sá, N.P, Santiago, G., Giannerini, M.C.S, Bengtson P.:    |
|-----|---------------------------------------------------------------------------------------|
| 478 | Influence of the intertropical convergence zone on early Cretaceous plant             |
| 479 | distribution in the South Atlantic. Sci. Rep. 12, 12600, 2022.                        |
| 480 | Chaboureau, AC., Donnadieu, Y., Sepulchre, P., Robin, C., Guillocheau, F., Rohais,    |
| 481 | S.: The Aptian evaporites of the South Atlantic: A climatic paradox?. Clim. Past,     |
| 482 | 8, 1047–1058, 2012.                                                                   |
| 483 | Chaboureau, AC., Sepulchre, P., Donnadieu, Y., Franc, A.: Tectonic-driven climate     |
| 484 | change and the diversification of angiosperms. PNAS 111, 14066–14070, 2014.           |
| 485 | Chumakov, N.M., Zharkov, M.A., Herman, A.B., Doludenko, M.P., Kalandadze, N.N.,       |
| 486 | Lebedev, E.A., Ponomarenko, A.G., Rautian, A.S.: Climate belts of themid-             |
| 487 | Cretaceous time. Stratigr. Geol. Correl., 3, 241–260, 1995.                           |
| 488 | Dino R.: Palinologia, bioestratigrafía e paleoecologia da Formação Alagamar- Cretáceo |
| 489 | da Bacia Potiguar, Nordeste do Brasil, PhD. thesis, Universidade de São Paulo,        |
| 490 | Brazil, 299 pp., 1992.                                                                |
| 491 | Dino R.: Algumas espécies novas de grãos de pólen do Cretáceo Inferior do nordeste do |
| 492 | Brasil. Bol. Geociênc. Petrobras, 8, 257-273, 1994.                                   |
| 493 | Doyle J.A., Jardiné S., Dorenkamp A.: Afropollis, a new genus of early angiosperm     |
| 494 | pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of      |
| 495 | northern Gondwana. Bull. Centres Rech. Explor. Prod. Elf-Aquitaine, 6, 39-117,        |
| 496 | 1982.                                                                                 |
| 497 | Dufrêne M., Legendre, P.: Species assemblages and indicator species: the need for a   |
| 498 | flexible asymmetrical approach. Ecol. Monogr. 67, 345-366, 1997.                      |
| 499 | Erdtman G.: An introduction to pollen analysis. Waltham, Chronica Botanica Company,   |
| 500 | v. XII, 239 p. 1943                                                                   |
|     |                                                                                       |





- 501 Erdtman G.: Handbook of Palynology: An Introduction to the Study of Pollen Grains
- 502 and Spores. Copenhagen, Ejnar Munksgaard, 486 pp., 1969.
- 503 Faegri K., Iversen, J.: Textbook of Pollen Analysis. Munksgaard (Scandinavian
- 504 University Books), Copenhagen, 236 Pp. 1966.
- 505 Fossilworks. <u>http://fossilworks.org</u>, last access: 27 August 2022.
- 506 Hammer O., Harper D.A.T., Ryan P.D.: PAST: paleontological statistics software
- 507 package for education and data analysis. Palaeontol. Electron., 4: 1-9, 2001.
- 508 Hashimoto A.T.: Contribuição ao estudo do relacionamento da palinologia e a
- 509 estratigrafia de sequências. Análise da seção do Cretáceo Médio/Superior da
- 510 Bacia de Santos. MSc. thesis, Universidade Federal do Rio Grande do Sul, Rio
- 511 Grande do Sul, Brazil, 130 pp., 1995.
- 512 Hay W.W. and Floegel S.: New thoughts about the Cretaceous climate and oceans.
- 513 Earth-Sci. Rev., 115, 262-272, 2012.
- 514 Heimhofer U., Adatte T., Hochuli P.A., Burla S., Weissert H.: Coastal sediments from
- 515 the Algarve: low-latitude climate archive for the Aptian—Albian. Int. J. Earth
- 516 Sci., 97, 785–797, 2008.
- 517 Jansonius, J., Hills, L. V. & Hartkopf-Fröder, C.: Genera File of Fossil Spores and
- 518 Pollen, Spec. Pub., Department of Geology, University of Calgary, Alberta, 1976–
  519 1996.
- 520 Lima M. R.: Palinologia da Formação Santana (Cretáceo do nordeste do Brasil). II.
- 521 Descrição sistemática dos esporos da Subturma Azonotriletes. Ameghiniana, XV,
- 522 333-365, 1978.
- 523 Lima M.R.: Paleoclimatic reconstrution the Brazilian Cretaceous based on
- 524 palynological date. Rev. Bras. Geoc., 4, 223-228, 1983.





| 525 | Lima, M. R.: Palinologia da Formação Santana (Cretáceo do nordeste do Brasil). II.       |
|-----|------------------------------------------------------------------------------------------|
| 526 | Descrição sistemática dos esporos da Subturma Zonotriletes e Turma Monoletes,            |
| 527 | e dos polens das turmas Saccites e Aletes. Ameghiniana, XVI, 27-63, 1979.                |
| 528 | Milani, E. J., Rangel, H. D., Bueno, G. V., Stica, J. M., Winter, W. R., Caixeta, J. M., |
| 529 | Neto, O. P.: Bacias sedimentares brasileiras: cartas estratigráficas. Bol. Geoc.         |
| 530 | PETROBRAS, 15, 183-205, 2007.                                                            |
| 531 | Ohba, M. and Ueda, H.: AGCM study on effects of continental drift on tropical climate    |
| 532 | at the early and late Cretaceous. J. Meteorol. Soc. Jpn. 88, 869-881, 2010.              |
| 533 | Petri S.: Brazilian Cretaceous paleoclimates: evidence from clay-minerals, sedimentar    |
| 534 | structures and palynomorphs. Rev. Bras. Geoc., 13, 215-222, 1983.                        |
| 535 | Regali M.S.P., Uesugui N., Santos A.S.: Palinologia dos sedimentos Meso-cenozoicos       |
| 536 | do Brasil (I). Bol. Téc. Petrobras, 17, 177-191, 1974.                                   |
| 537 | Regali, M.S.P., and Santos, P.R.S.: Palinoestratigrafia e geocronologia dos sedimentos   |
| 538 | albo-aptianos das bacias de Sergipe e Alagoas – Brasil. in: Simpósio sobre o             |
| 539 | Cretáceo do Brasil, 5, Rio Claro, 1999, Rio Claro, Brazil, 411-419, 1999.                |
| 540 | Rossetti D.F., and Góes A. M.: Caracterização paleoambiental de depósitos albianos na    |
| 541 | borda Sul da Bacia de São Luís-Grajaú: modelo de delta fluvial influenciado por          |
| 542 | tempestade. Braz. J. Geol., 33, 299-312, 2003.                                           |
| 543 | Santos, A., De Lira Mota, M., Kern, H.P., Fauth, G., Paim, P.S.G., Netto, R.G.,          |
| 544 | Sedorko, D., Lavina, E.L.C., Krahl, G., Fallgatter, C., Silveira, D.M., Aquino,          |
| 545 | C.D., Santos, M.O., Baecker-Fauth, S., Vieira, C.E.L.: Earlier onset of the early        |
| 546 | Cretaceous equatorial humidity belt. Glob. Planet. Change, 260, 103724, 2021.            |
| 547 | Scotese, C.: A new global temperature curve for the Phanerozoic. Paper Presented at the  |
| 548 | Geological Society of America, Annual Meeting in Denver, Colorado – 287167,              |
| 549 | 2016.                                                                                    |





- 550 Scotese, C. R., Song, H., Mills, J. W. & van der Meer, D. G.: Phanerozoic
- 551 paleotemperatures: The earth's changing climate during the last 540 million years.
- 552 Earth Sci. Rev. 215, 103500tese, 2021
- 553 Souza-Lima, W., and Silva, R. O.: Aptian-Albian paleophytogeography and
- 554 paleoclimatology from Northeastern Brazil sedimentary basins. Rev. Palaeobot.
- 555 Palyno. 258, 163–189, 2018.
- 556 Suguio K., and Barcelos J. H.: Paleoclimatic evidence from the Bauru Group,
- 557 Cretaceous of the Paraná Basin, Brazil. Rev. Bras. Geoc., 13, 232-236, 1983.
- 558 Uesugui N.: Palinologia: técnica de tratamento de amostras. Bol. Téc. Petrobras, 22:
- 559 229-240, 1979.
- 560 Vakhrameev V.A.: Range and paleoecology of Mesozoic conifers. The
- 561 Cheirolepidiaceae. Paleontol. J. 41, 11–25, 1970.
- 562 Vakhrameev V.A.: Pollen *Classopollis*: indicator of Jurassic and Cretaceous climates.
- 563 Paleobotanist, 28, 301–307, 1981.







Figure 1. Location of sedimentary basins showing the sites of stratigraphic sections.





# Α

| Formations | Bragança-Viseu<br>Basin | São Luís<br>Basin | Parnaíba<br>Basin |
|------------|-------------------------|-------------------|-------------------|
| Codó       | Z                       |                   |                   |
| Grajaú     | $\mathbf{Y}$            |                   |                   |
| Bragança   |                         |                   |                   |

# В

| Litho-<br>stratigraphy | Bragança-Viseu<br>Basin | São Luís<br>Basin | Parnaíba<br>Basin |
|------------------------|-------------------------|-------------------|-------------------|
| Itapecuru<br>Formation |                         | PR<br>PE RL       | CI                |
| Codó<br>Formation      |                         |                   |                   |
| Bragança<br>Formation  | EG                      |                   |                   |
|                        | te Shales Si            | ltstones          |                   |

Figure 2. A) Correlation of lithostratigraphic data of the studied basins and; B) the studied wells.







Figure 3. Stratigraphic distribution of bioclimatic groups of well EGST-1 (Bragança-Viseu Basin).







Figure 4. Stratigraphic distribution of bioclimatic groups of well VN-1 (Bragança-Viseu Basin).







Figure 5. Stratigraphic distribution of bioclimatic groups of well PR-1 (São Luís Basin).

48







%

Figure 6. Stratigraphic distribution of bioclimatic groups of well PE-1 (São Luís Basin).







Figure 7. Stratigraphic distribution of bioclimatic groups of well RL-1 (São Luís Basin).

50







%

Figure 8. Stratigraphic distribution of bioclimatic groups of well CI-1 (Parnaíba Basin).







Figure 9. Composite profile showing the stratigraphic distribution of bioclimatic groups, diversity, Fs/X against the paleoclimatic phases. Agglomerative, hierarchical clustering and stratigraphically constrained dendrogram (CONISS) showing the main break (dashed red line).







Figure 10. Principal component plot of bioclimatic groups for the pre-evaporitic phase (green dots, N = 28), evaporitic phase (orange dots, N = 8), and post-evaporitic phase (blue dots, N = 4).

-30°

-90°

Bragança-Viseu

-60

O São Luis



–30°

30°







-30

Parnaíba

0

Matruth

Figure 11. A) Late Aptian latitudinal distribution of the xerophyte bioclimatic group. B) Paleoclimatic belts of the late Aptian in South America (climatic belts modified from Scotese, 2016). Reconstruction map at 116 Ma modified from ODSN Plate Tectonic Reconstruction Service. C) Comparison of the bioclimatic group Xerophytes by basin. Data from the Mathru Basin (Dahab Formation) from Deaf et al. (2020).





| Wells  | Basins             | Lithostratigraphy<br>(Formation) | Interval<br>(m)    | Lat (S)       | Long (W)      | No. total<br>core<br>samples | Lithology of<br>the studied<br>interval                                     |
|--------|--------------------|----------------------------------|--------------------|---------------|---------------|------------------------------|-----------------------------------------------------------------------------|
| EGST-1 | Bragança-<br>Vizeu | Bragança Fm.                     | 676-<br>1872.1     | -01:17:55.229 | -46:34:55.683 | 8                            | Sandstones,<br>siltstones,<br>conglomerates.                                |
| VN-1   | Bragança-<br>Vizeu | Bragança Fm.                     | 1287.6-<br>1317.69 | -01:06:48.216 | -46:40:35.673 | 4                            | Sandstones.                                                                 |
| PE-1   | São Luís           | Codó Fm.                         | 1562-<br>1776.8    | -02:22:09.725 | -44:57:28.505 | 4                            | Sandstones,<br>siltstones,<br>calcarenites.                                 |
| RL-1   | São Luís           | Codó Fm.                         | 1157.3-<br>1240.3  | -02:40:21.105 | -45:37:09.065 | 7                            | Sandstones,<br>siltstones,<br>calcarenites,<br>anhydrites.                  |
| PR-1   | São Luís           | Codó Fm.                         | 1507.6-<br>1513.1  | -01:59:59.070 | -45:52:58.477 | 4                            | Sandstones, siltstones.                                                     |
| CI-1   | Parnaíba           | Codó Fm.                         | 768-<br>907.1      | -02:59:54.215 | -45:24:30.842 | 13                           | Sandstones,<br>siltstones,<br>conglomerates,<br>calcarenites,<br>anhydrites |

Table 1. Localities, lithostratigraphy of the studied sections and lithologies of studied interval.





| Plant Groups                                                                                                                                                                                                                       | Palynomorph taxa        | Botanical affinities         | Bioclimatic groups     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|------------------------|
|                                                                                                                                                                                                                                    | Aequitriradites         | Hepaticae                    | Hvarophyte             |
|                                                                                                                                                                                                                                    | Cingutriletes           | Sphagnaceae                  | Hvgrophyte             |
| Plant Groups F<br>Bryophytes C<br>Bryophytes C<br>G<br>Ferns G<br>Ferns G<br>Ferns G<br>G<br>F<br>Ferns G<br>G<br>G<br>M<br>M<br>Pa<br>F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Stereisporites          | Sphagnaceae                  | Hvgrophyte             |
|                                                                                                                                                                                                                                    | Triporoletes            | Ricciaceae                   | Hvgrophyte             |
|                                                                                                                                                                                                                                    | Appendicisporites       | Schizaeales (Anemiaceae?)    | Hvarophyte             |
|                                                                                                                                                                                                                                    | Biretisporites          | Osmundaceae                  | Hvarophyte             |
|                                                                                                                                                                                                                                    | Cicatricosisporites     | Schizaeales (Anemiaceae?)    | Hvgrophyte             |
|                                                                                                                                                                                                                                    | Crybelosporites         | Marsileaceae                 | Hvdrophyte             |
|                                                                                                                                                                                                                                    | Cyathidites             | Cyatheaceae-Dicksoniaceae    | Upland flora           |
|                                                                                                                                                                                                                                    | Deltoidospora           | Cyatheaceae-Dicksoniaceae    | Upland flora           |
|                                                                                                                                                                                                                                    | Distaltriangulisporites | Schzaeales (Schizaeaceae?)   | Hygrophyte             |
|                                                                                                                                                                                                                                    | Foveotriletes           | Schzaeales (Schizaeaceae?)   | Hygrophyte             |
| Ferns                                                                                                                                                                                                                              | Gleicheniidites         | Gleicheniaceae               | Hygrophyte             |
|                                                                                                                                                                                                                                    | Granulatusporites       | Pteridaceae                  | Hygrophyte             |
|                                                                                                                                                                                                                                    | Klukisporites           | Schizaeales (Lygodiaceae?)   | Hygrophyte             |
|                                                                                                                                                                                                                                    | Matonisporites          | Matoniaceae                  | Upland flora           |
|                                                                                                                                                                                                                                    | Paludites               | Marsileaceae                 | Hydrophyte             |
|                                                                                                                                                                                                                                    | Reticulosporis          | Schzaeales (Schizaeaceae?)   | Hygrophyte             |
|                                                                                                                                                                                                                                    | Todisporites            | Osmundaceae                  | Hygrophyte             |
|                                                                                                                                                                                                                                    | Undulatisporites        | Schzaeales (Schizaeaceae?)   | Hygrophyte             |
|                                                                                                                                                                                                                                    | Verrucosisporites       | Osmundaceae (?)              | Hygrophyte             |
|                                                                                                                                                                                                                                    | Antulsporites           | Selaginellaceae              | Hygrophyte             |
|                                                                                                                                                                                                                                    | Camarozonosporites      | Lycopodiaceae                | Hygrophyte             |
|                                                                                                                                                                                                                                    | Cingulatisporites       | Selaginellaceae              | Hygrophyte             |
| Lycophytes                                                                                                                                                                                                                         | Densoisporites          | Selaginellaceae              | Hygrophyte             |
|                                                                                                                                                                                                                                    | Echinatisporites        | Selaginellaceae              | Hygrophyte             |
|                                                                                                                                                                                                                                    | Hamulatisporis          | Lycopodiaceae                | Hygrophyte             |
|                                                                                                                                                                                                                                    | Leptolepidites          | Lycopodiaceae                | Hygrophyte             |
|                                                                                                                                                                                                                                    | Lycopodiumsporites      | Lycopodiaceae                | Hygrophyte             |
|                                                                                                                                                                                                                                    | Perotrilites            | Selaginellaceae              | Hygrophyte             |
|                                                                                                                                                                                                                                    | Uvaesporites            | Selaginellaceae              | Hygrophyte             |
| Pteridosperms                                                                                                                                                                                                                      | Vitreisporites          | Caytoniaceae                 | Upland flora           |
|                                                                                                                                                                                                                                    | Araucariacites          | Araucariaceae                | Upland flora           |
|                                                                                                                                                                                                                                    | Balmeiopsis             | Araucariacites               | Upland flora           |
|                                                                                                                                                                                                                                    | Bennettitaepollenites   | Cycadaceae                   | Tropical lowland flora |
|                                                                                                                                                                                                                                    | Callialasporites        | Araucariacites/Podocarpaceae | Upland flora           |
| Gymnosperms                                                                                                                                                                                                                        | Cavamonocolpites        | Cycadaceae                   | Tropical lowland       |
|                                                                                                                                                                                                                                    | Cedripites              | Pinaceae                     | Upland flora           |
|                                                                                                                                                                                                                                    | Cingulatipollenites     | Araucariaceae                | Upland flora           |
|                                                                                                                                                                                                                                    | Classopollis            | Cheirolepidiaceae            | Xerophytes             |
|                                                                                                                                                                                                                                    | Complicatisaccus        | Coniferae i. sedis           | Upland flora           |

Table 2. Plant groups, palynomorph taxa, botanical affinities and bioclimatic groups of the material studied.





|             | Cycadopites          | Cycadaceae                 | Tropical lowland flora |
|-------------|----------------------|----------------------------|------------------------|
|             | Elateropollenites    | Gnetales (Gnetaceae?)      | Xerophytes             |
|             | Equisetosporites     | Gnetales (Ephedraceae?)    | Xerophytes             |
|             | Eucommiidites        | Gnetales?                  | Xerophytes             |
|             | Exesipollenites      | Cupressaceae               | Upland flora           |
|             | Gnetaceaepollenites  | Gnetales (Gnetaceae?)      | Xerophytes             |
|             | Inaperturopollenites | Cupressaceae               | Upland flora           |
|             | Regalipollenites     | Gnetales (Ephedraceae?)    | Xerophytes             |
|             | Rugubivesiculites    | Podocarpaceae              | Upland flora           |
|             | Sergipea             | Gnetales                   | Xerophytes             |
|             | Singhia              | Gnetales (Ephedraceae?)    | Xerophytes             |
|             | Spheripollenites     | Cupressaceae               | Upland flora           |
|             | Steevesipollenites   | Gnetales (Gnetaceae?)      | Xerophytes             |
|             | Uesuguipollenites    | Cupressaceae               | Upland flora           |
|             | Afropollis           | ?                          | Tropical lowland flora |
|             | Arecipites           | Monocots (Arecaceae?)      | Tropical lowland flora |
|             | Brenneripollis       | Chloranthaceae             | Tropical lowland flora |
|             | Clavatipollenites    | Chloranthaceae             | Tropical lowland flora |
|             | Cretacaeiporites     | Trimeniaceae?              | Tropical lowland flora |
|             | Dejaxpollenites      | ?                          | Tropical lowland flora |
| Angiosporms | Monocolpopollenites  | Monocots (Arecaceae?)      | Tropical lowland flora |
| Anglosperms | Psiladicolpites      | Monocots (Liliaceae?)      | Tropical lowland flora |
|             | Retimonocolpites     | Monocots (Arecaceae?)      | Tropical lowland flora |
|             | Retiquadricolpites   | ?                          | Tropical lowland flora |
|             | Rousea               | Eudicots (Flacourtiaceae?) | Tropical lowland flora |
|             | Stellatopolis        | ?                          | Tropical lowland flora |
|             | Tricolpites          | Eudicots                   | Tropical lowland flora |
|             | Trisectoris          | Illiciaceae                | Tropical lowland flora |





| Bioclimatic<br>groups     | Main representatives (sporomoph genera) | Remarks                                                                                                                                                                |  |  |  |  |
|---------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Hydrophytes               | Crybellosporites                        | Hydrophytes represent aquatic plants that live<br>with a portion of their vegetative parts<br>permanently immersed in water.                                           |  |  |  |  |
| Hygrophytes               | Cicatricosisporites                     | Hygrophyte plants depend on water to reproduce and are therefore generally associated with moist conditions and rarely reported from arid environments.                |  |  |  |  |
| Tropical lowland<br>flora | Afropollis                              | The tropical lowland flora is composed by families related to more humid conditions in lowland areas. All angiosperm genera and morphotypes are included in this flora |  |  |  |  |
| Upland flora              | Araucariacites,<br>Caliallasporites     | Families assigned to thermophilic, large conifers, formed forests in the highlands from 200 to 1800 m.                                                                 |  |  |  |  |
| Xerophytes                | Classopollis,<br>Gnetaceaepollenites    | The group is adapted to xeric or water-<br>stressed environments and therefore<br>associated with arid climates.                                                       |  |  |  |  |

# Table 3. Description of the bioclimatic groups and their main representatives.





| Basins         | Wells  | Hydrophytes | Hygrophytes | Tropical<br>lowland flora | Upland<br>flora | Xerophytes | Fs/X | H'  |
|----------------|--------|-------------|-------------|---------------------------|-----------------|------------|------|-----|
| Bragança-Viseu | EGST-1 | 0.9         | 24.9        | 5.5                       | 16.6            | 52.1       | 0.38 | 2.1 |
| Bragança-Viseu | VN-1   | 0.2         | 28.4        | 1.6                       | 9.7             | 60.2       | 0.31 | 1.6 |
| São Luís       | PR-1   | 1.0         | 14.3        | 20.4                      | 18.0            | 46.3       | 0.25 | 2.1 |
| São Luís       | PE-1   | 0.1         | 16.8        | 8.5                       | 26.0            | 48.6       | 0.28 | 2.2 |
| São Luís       | RL-1   | 1.0         | 15.8        | 12.0                      | 7.8             | 63.4       | 0.24 | 1.9 |
| Parnaíba       | CI-1   | 0.7         | 11.4        | 6.0                       | 15.9            | 63.6       | 0.19 | 2.0 |
| General ave    | rage   | 0.7         | 18.6        | 9.0                       | 15.7            | 55.7       | 0.28 | 2.0 |

Table 4. Average abundance of bioclimatic groups, diversity (H') and Fs/X ratio of the studied wells.





Table 5. Average abundance of bioclimatic groups, diversity, Fs/X and marine elements of the paleoclimatic phases for the Bragança-Viseu, São Luís and Parnaíba basins. No marine elements.

| Paleoclimatic phases | Hygrophytes | Hydrophytes | Tropical<br>lowland<br>flora | Upland<br>flora | Xerophytes | Diversity<br>(H') | Fs/X | IndVal                          |
|----------------------|-------------|-------------|------------------------------|-----------------|------------|-------------------|------|---------------------------------|
| Pre-evaporitic       | 18.8        | 0.7         | 5.6                          | 14.1            | 60.7       | 2.0               | 0.3  | Deltoidospora<br>sp.<br>(80.6%) |
| Evaporitic           | 10.0        | 1.0         | 16.0                         | 5.0             | 67.9       | 2.2               | 0.1  | Afropollis spp.<br>(79.3%)      |
| Post-evaporitic      | 15.5        | 0.6         | 14.4                         | 22.0            | 47.4       | 2.1               | 0.3  | Deltoidospora<br>sp. (86.2%)    |
| General average      | 14.8        | 0.8         | 12.0                         | 13.7            | 58.7       | 2.1               | 0.2  |                                 |